Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shu-Sheng Zhang, Yong-Hong

Wen,* Mao-Jie Li and Xue-Mei Li

College of Chemistry and Molecular
Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong,
People's Republic of China

Correspondence e-mail: shushzhang@126.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.063$
$w R$ factor $=0.142$
Data-to-parameter ratio $=8.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
N^{\prime}-(2-Hydroxybenzylidene)-2-(quinolin-8-yloxy)acetohydrazide monohydrate

In the title compound, $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$, the dihedral angle between the planes of the benzene ring and the quinoline ring system is $26.6(2)^{\circ}$. Each solvent water molecule is linked to two acetohydrazide molecules via intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$, $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming chains along [010].

Comment

Recently, we have reported the structure of N^{\prime}-(2-fluoro-benzylidene)-2-(quinolin-8-yloxy)acetohydrazide methanol solvate (Wen et al., 2005). We now report here the crystal structure of the title compound, (I).

(I)

The bond lengths and angles in (I) (Table 1) are comparable with those in the above fluoro-derivative (Wen et al., 2005). The $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$ molecule is non-planar (Fig. 1). The dihedral angle between the planes of the benzene ring and the quinoline ring system is 26.6 (2).

Intramolecular $\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{~N} 3$ and $\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 1$ hydrogen bonds generate rings of graph-set motifs $S(6)$ and $S(5)$, respectively (Bernstein et al., 1995). Each water molecule is linked to two $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$ molecules via intermolecular N 2 $\mathrm{H} 2 \cdots \mathrm{O} 1 W, \quad \mathrm{O} 1 W-\mathrm{H} 2 W 1 \cdots \mathrm{~N} 1$ and $\mathrm{O} 1 W-\mathrm{H} 1 W 1 \cdots \mathrm{O} 2^{\mathrm{i}}$ hydrogen bonds [symmetry code: (i) $-x, y-\frac{1}{2}, \frac{1}{2}-z$; Table 2], to form chains along [010] (Fig. 2).

Figure 1
The structure of (I), showing 50\% probability displacement ellipsoids and the atom-numbering scheme. Dashed lines represent hydrogen bonds.

Received 29 September 2005
Accepted 10 October 2005
Online 15 October 2005

Experimental

Compound (I) was prepared according to the method of Wen et al. (2005). Colourless single crystals suitable for X-ray diffraction study were obtained by slow evaporation of a tetrahydrofuran-methanol $(1: 2 \mathrm{v} / \mathrm{v})$ solution over a period of 7 d .

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=339.35$
Orthorhombic, $P_{\circ} 2_{1} 2_{1} 2_{1}$
$a=4.6661$ (12) \AA
$b=15.110$ (4) \AA
$c=23.314$ (6) \AA
$V=1643.7(7) \AA^{3}$
$Z=4$
$D_{x}=1.371 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Siemens SMART 1000 CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.959, T_{\text {max }}=0.991$
9129 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.063$
$w R\left(F^{2}\right)=0.143$
$S=1.12$
1924 reflections
235 parameters
H atoms treated by a mixture of independent and constrained refinement

Mo $K \alpha$ radiation
Cell parameters from 1233 reflections
$\theta=2.7-20.9^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Rod, colourless $0.43 \times 0.11 \times 0.09 \mathrm{~mm}$

1924 independent reflections
1317 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.116$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-5 \rightarrow 5$
$k=-18 \rightarrow 18$
$l=-19 \rightarrow 28$

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0499 P)^{2}\right. \\
\quad+0.0947 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.15 \mathrm{e}^{-3} \AA^{-3} \\
\Delta \rho_{\min }=
\end{array}-0.16 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 8$	$1.366(5)$	$\mathrm{N} 2-\mathrm{C} 11$	$1.354(5)$
$\mathrm{O} 1-\mathrm{C} 10$	$1.426(5)$	$\mathrm{N} 2-\mathrm{N} 3$	$1.376(5)$
$\mathrm{O} 2-\mathrm{C} 11$	$1.219(5)$	$\mathrm{N} 3-\mathrm{C} 12$	$1.278(5)$
$\mathrm{O} 3-\mathrm{C} 14$	$1.364(5)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.491(6)$
$\mathrm{C} 8-\mathrm{O} 1-\mathrm{C} 10$	$117.1(3)$	$\mathrm{O} 2-\mathrm{C} 11-\mathrm{N} 2$	$123.0(4)$
$\mathrm{C} 11-\mathrm{N} 2-\mathrm{N} 3$	$117.3(3)$	$\mathrm{N} 2-\mathrm{C} 11-\mathrm{C} 10$	$117.7(4)$
$\mathrm{C} 12-\mathrm{N} 3-\mathrm{N} 2$	$117.5(3)$		
			$-1.5(6)$
$\mathrm{C} 11-\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 12$	$169.5(4)$	$\mathrm{O} 1-\mathrm{C} 10-\mathrm{C} 11-\mathrm{N} 2$	$179.2(3)$
$\mathrm{C} 10-\mathrm{O} 1-\mathrm{C} 8-\mathrm{C} 7$	$-7.2(6)$	$\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 12-\mathrm{C} 13$	$-5.4(6)$
$\mathrm{C} 8-\mathrm{O} 1-\mathrm{C} 10-\mathrm{C} 11$	$176.8(3)$	$\mathrm{N} 3-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	
$\mathrm{~N} 3-\mathrm{N} 2-\mathrm{C} 11-\mathrm{C} 10$	$179.2(4)$		

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{~N} 3^{\mathrm{i}}$	0.82	1.89	$2.610(5)$	146
$\mathrm{~N} 2-\mathrm{H} 2 \cdots 1^{\mathrm{i}}$	0.86	2.33	$2.687(5)$	105
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{O} 1 W^{\mathrm{i}}$	0.86	1.96	$2.789(5)$	162
$\mathrm{O} 1 W-\mathrm{H} 1 W 1 \cdots \mathrm{O} 2^{\mathrm{ii}}$	$0.84(4)$	$2.01(3)$	$2.824(4)$	$166(6)$
$\mathrm{O} 1 W-\mathrm{H} 2 W 1 \cdots \mathrm{~N} 1^{\mathrm{i}}$	$0.84(4)$	$1.91(4)$	$2.755(5)$	$178(4)$

[^1]

Figure 2
A packing diagrom for (I), showing the hydrogen-bonded (dashed lines) chains along the b axis.

The water H atoms were located in a difference Fourier map, while the other H atoms were positioned geometrically. The water H atoms were refined with $\mathrm{O}-\mathrm{H}$ and $\mathrm{H} \cdots \mathrm{H}$ distances restrained to 0.84 (1) and 1.37 (2) \AA, respectively. All other H atoms were constrained to ride on their parent atoms, with $\mathrm{O}-\mathrm{H}=0.82 \AA, \mathrm{~N}-\mathrm{H}=0.86 \AA$ and $\mathrm{C}-\mathrm{H}=0.93$ or $0.97 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2-1.5 U_{\text {eq }}$ (parent atom). Owing to the absence of any significant anomalous scatterers in the molecules, Friedel pairs were merged before the final refinement.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

This project was supported by the Programme for New Century Excellent Talents in Universities (grant No. NCET-04-0649) and the Project of Educational Administration of Shandong Province (grant No. J04B12).

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Versions 4.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Wen, Y.-H., Zhang, S.-S., Li, M.-J. \& Li, X.-M. (2005). Acta Cryst. E61, o2045o2046.

[^0]: (C) 2005 International Union of Crystallography All rights reserved

[^1]: Symmetry codes: (i) x, y, z; (ii) $-x, y-\frac{1}{2},-z+\frac{1}{2}$.

